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Abstract

Inspired by recent work using random matrix theory to study neural networks, we
use the linearization trick and the matrix Dyson equation to find the limiting spectral
distribution for the covariance matrix of Gaussian random features. Compared
to prior work, this approach leads to a much shorter derivation of fixed point
equations specifying the Stieltjes transform of the target distribution, which can
then be solved numerically. Our empirical results suggest that our method achieves
a faithful approximation to the limiting distribution that is closely matched by the
empirical spectral distribution as dimension grows.

1 Introduction

Deep neural networks have been the driver of tremendous progress in machine learning over the
past decade. They are at the core of advances in computer vision [10, 8, 5], natural language
processing [4, 3], and reinforcement learning [11], among many other application areas. However, a
comprehensive theoretical explanation of the empirically observed success of deep learning remains
elusive. Those analyses which are present in the literature tend to focus on constrained cases that
involve many assumptions which do not line up with state-of-the-art models used in practice [16].

A key contributor to the success of deep learning is the ability of neural networks to generalize to
unseen data. The theory of generalization in machine learning is well-established under the framework
of Probably Approximately Correct (PAC) learning [18]. There exist generalization bounds which
capture the gap between training and test error of a learning algorithm [17]. However, these bounds
depend on the complexity of the hypothesis space, i.e., the class of candidate functions that are
considered in an attempt to fit the training data. Neural networks constitute a rich function class
whose complexity has only so far been estimated in limited cases with strong assumptions on the
size and architecture of the network. For example, [12] prove a lower bound on the Rademacher
complexity of two-layer neural networks with a ReLU activation function.

Recently, a novel line of research has approached the question of generalization from the perspective
of random matrix theory. [14] analyze Gaussian random feature models, which resemble neural
networks at initialization. Their analysis of the limiting spectral distribution of a kernel matrix related
to the output of the random feature model yields a closed-form expression of the training error of such
a model in the case of ridge regression. [2] find the limiting spectral distribution for random feature
models in the non-Gaussian case using the moment method. [15] find the same limiting distribution
using a combination of the resolvent method and the cumulant method. Taking this idea a step further,
[1] use techniques from random matrix theory and the neural tangent kernel [9] (a kernel formed by



the Jacobian of a neural network’s output with respect to the input) to express the generalization error
(test error) of two-layer neural networks in the infinite width and infinite data limit.

In this work, we aim to reproduce the results obtained in [14, 2, 15] for random feature models.
We make the simplifying assumption that both the features and weights are Gaussian and that the
activation function is the identity. Like [15], we approach this with the resolvent method, but
forgo the cumulant expansion in favour of the matrix Dyson equation (see [7] for a comprehensive
overview). Solving this equation gives an approximation to the Stieltjes transform of the limiting
spectral distribution we are interested in. In our simulations, we show how the approximation we
obtain compares to the empirical spectral distribution in high dimensions.

2 Setup

We adopt the same setup as in [14, 2, 15], with some simplifying assumptions. Let W ∈ Rn1×n0

and X ∈ Rn0×m. The entries of W and X are drawn i.i.d. from a normal distribution with mean
0 and variance σ2

w and σ2
x respectively. We may view this from the perspective of a one-layer

linear neural network with input X , where n0 is the feature dimension and m is the number of
samples, and with weight matrix W , where n1 is the output dimension. We consider the n1 ×m
matrix Y = f( 1√

n0
WX), where f is an activation function applied elementwise. For simplicity, we

assume in this work that f is the identity map. Then, the random matrix of interest is the symmetric
polynomial p := 1

mY Y
T ∈ Rn1×n1 .

3 Solving the Matrix Dyson Equation

Before beginning our derivations, we briefly outline our strategy. Recall that for any z ∈ H (i.e., z ∈ C
with ℑ(z) > 0), the Stieltjes transform of a probability measure µ on R, s(z;µ), is

∫
R

1
z−xµ(dx). For

the empirical spectral measure of p, which we denote by µn1 , we have s(z;µn1) = tr(zIn1 − p)−1.
The matrix (zIn1

− p)−1 is called the resolvent of p. Showing that for all z ∈ H, s(z;µn1
) converges

in probability to s(z;µ) for some probability measure µ on R is equivalent to showing that µn1

converges to µ weakly in probability. (To be more specific, here we are interested in the limit as
n1 → ∞ while the ratios ϕ := n0

m and ψ := n0

n1
are held constant). Furthermore, for every x ∈ R,

we can recover µ via the Stieltjes inversion limη→0ℑ(s(x+ iη;µ)).

Expanding p, we have that p = 1
mn0

WXXTWT . Let d = n1+2n0+m. We define the linearization
p̂ ∈ Rd×d of p to be

p̂ =


0 0 0 1√

n0
W

0 0 1√
m
X −In0

0 1√
m
XT −Im 0

1√
n0
WT −In0

0 0

 . (1)

We define Λ ∈ Rd×d with the same block structure as p̂ and such that the top-left n1 × n1 block is
In1

and all other blocks are zero. We remark that the resolvent of p is equal to the top-left block of
(Λz − p̂)−1, and thus the Stieltjes transform of interest is simply the Stieltjes transform of that block.

Since W and X are assumed to be mean zero, we have that

H := p̂− E[p̂] =


0 0 0 1√

n0
W

0 0 1√
m
X 0

0 1√
m
XT 0 0

1√
n0
WT 0 0 0

 . (2)

For z ∈ H (i.e., z ∈ C with ℑ(z) > 0), the matrix Dyson equation is
−M = (−Λz + E + S(M))−1, (3)

where E := E[p̂] and S(M) := EH [HMH]. We aim to solve this equation for M . An important
result in random matrix theory shows concentration of the Stieltjes transform of (Λz − p̂)−1 around
M(z), thus motivating our approach [13]. We state the result below for completeness.
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Theorem 1. If Sij has max |Sij | ≤ 1/n, there is δ > 0 so for z ∈ H, |ℑz| = η > 0, ||Π||2HS ≤ n,
we have

P
(∣∣∣∣ 1n tr(Π(

(Λz − p̂)−1 −M(z)
))∣∣∣∣ > n−1/2

)
≤ exp(−δη4n).

Now, viewing M as a 4× 4 block matrix (in the same fashion as p̂), we have

HMH =


1
n0
WM (44)WT 1√

mn0
WM (43)XT 1√

mn0
WM (42)X 1

n0
WM (41)W

1√
mn0

XM (34)WT 1
mXM

(33)XT 1
mXM

(32)X 1√
mn0

XM (31)W
1√
mn0

XTM (24)WT 1
mX

TM (23)XT 1
mX

TM (22)X 1√
mn0

XTM (21)W
1
n0
WTM (14)WT 1√

mn0
WTM (13)XT 1√

mn0
WTM (12)X 1

n0
WTM (11)W

 .
We observe that only those blocks which contain two copies of W or two copies of X have nonzero
expectation, since the entries of W and X are independent.

For example, consider

E
[
(WM (44)WT )ij

]
= E

[ n0∑
k=1

n0∑
l=1

WikM
(44)
kl WT

lj

]
=

n0∑
k=1

n0∑
l=1

M
(44)
kl E[WikWjl].

Since the entries of W are independent, we only obtain a non-zero term in the case i = j and k = l,
and this term has the form M

(44)
kk σ2

w. This implies that E[WM (44)WT ] = σ2
wtr(M

(44))In1 .

With this reasoning, we obtain

S(M) =


1
n0
σ2
wtr(M

(44))In1 0 0 1
n0
σ2
w(M

(41))T

0 1
mσ

2
xtr(M

(33))In0

1
mσ

2
x(M

(32))T 0
0 1

mσ
2
x(M

(23))T 1
mσ

2
xtr(M

(22))Im 0
1
n0
σ2
w(M

(14))T 0 0 1
n0
σ2
wtr(M

(11))In0

 .
Since the solution to the matrix Dyson equation is unique, we assume M (14) =M (23) =M (32) =
M (41) = 0. We will be justified in doing so if we find a solution.

Plugging into Equation 3, we have

−M =


( 1
n0
σ2
wtr(M

(44))− z)In1
0 0 0

0 1
mσ

2
xtr(M

(33))In0 0 −In0

0 0 ( 1
mσ

2
xtr(M

(22))− 1)Im 0
0 −In0

0 1
n0
σ2
wtr(M

(11))In0


−1

.

To simplify the matrix inversion, let a = 1
n0
σ2
wtr(M

(44)) − z, b = 1
mσ

2
xtr(M

(33)), c =
1
mσ

2
xtr(M

(22))− 1, and d = 1
n0
σ2
wtr(M

(11)). Then, we can simply invert the matrix−a 0 0 0
0 −b 0 1
0 0 −c 0
0 1 0 −d


to obtain fixed point equations for the entries of M .

We have

M
(11)
ii =

bcd− c
ac(1− bd)

=
c(bd− 1)

ac(1− bd)
= −1

a
⇒tr(M (11)) = −n1

a

M
(22)
ii =

acd

ac(1− bd)
=

d

1− bd
⇒tr(M (22)) = n0

d

1− bd

M
(33)
ii =

abd− a
ac(1− bd)

= −1

c
⇒tr(M (33)) = −m

c

M
(44)
ii =

abc

ac(1− bd)
=

b

1− bd
⇒tr(M (44)) = n0

b

1− bd
.
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This leads to the system of equations

d =
γ1
a

c = γ2
d

1− bd
− 1 b =

γ3
c

a = γ4
b

1− bd
− z,

where
γ1 = −n1

n0
σ2
w γ2 =

n0
m
σ2
x γ3 = −σ2

x γ4 = σ2
w.

(Notice the constants only depend on the dimension through the fixed ratios ϕ = n0

m and ψ = n0

n1
).

This can be simplified into a system of two nonlinear equations in two variables,

d =
γ1

γ4(
b

1−bd )− z
b =

γ3

γ2(
d

1−bd )− 1
.

We numerically solve this system using a modified form of fixed point iteration, shown in Algorithm
1, which allows us to recover an approximation to the inverse Stieltjes transform directly.

Algorithm 1: Numerical Computation of the Limiting Distribution
Input: n0, n1, m, σw, σx, λ;
γ1 ← −n1

n0
σ2
w, γ2 ← n0

m σ2
x, γ3 ← −σ2

x, γ4 ← σ2
w;

b← 0, d← 0;
I ← logarithmically spaced values from 104 to 10−8;
for k ∈ I do

d← γ1

γ4(
b

1−bd )−(λ+ki)
;

b← γ3

γ2(
d

1−bd )−1
;

end
s← ℑ( 1πd);
Output: s

4 Results

We ran Algorithm 1 for various settings of n0, n1, m, σw, σx. The results are shown in Figure 1. The
Jupyter notebook used to generate the plots is available in the supplementary material.

We also aimed to numerically solve the fixed point equation from [14], which was re-written in an
equivalent form in [15]. However, due to large numerical errors, we were unable to do so.

5 Discussion

The plots in Figure 1 confirm that the limiting distribution found via the matrix Dyson equation
indeed captures the shape of the empirical spectral distribution. As the dimensions n0, n1, and m
grow, the empirical spectral distribution fits the limiting distribution more and more closely. Thus,
our relatively short derivation allows us to capture the spectrum of p without resorting to tedious
computation of moments (as in [14] and [2]) or cumulants (as in [15]). As an added bonus, the system
of fixed point equations obtained can be numerically solved in straightforward fashion via Algorithm
1, while working with the quartic fixed point equation of [14, 15] leads to overflow.

The limiting global law of (WX)(WX)T has also been studied in [6], and the same self-consistent
equation for the Stieltjes transform of µ as in [14, 15] is found. This is then used to derive the
distribution in closed form. A key point is that µ has a similar form Marchenko-Pastur law, but is not
identical to it, in spite of what the plots in Figure 1 might suggest.

To take these ideas further, one must ask what µ is when f is a non-linear activation function (e.g.
ReLU, sigmoid). [14, 2, 15] find that µ depends on f only through two scalar quantities involving
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(a) n0 = 2000, n1 = 3000, m = 4000,
σw = 1, σx = 1

(b) n0 = 2000, n1 = 3000,
m = 4000, σw = 1, σx = 0.1

(c) n0 = 2000, n1 = 3000, m = 4000,
σw = 1, σx = 2

(d) n0 = 5000, n1 = 2500,
m = 10 000, σw = 1, σx = 1

Figure 1: Plots of limiting (orange) and empirical (blue) spectral distribution (as generated by
Algorithm 1) for different choices of n0, n1, m, σw, and σx. λ values are on the horizontal axis and
density is on the vertical axis.

the Gaussian integral. To replicate this result in our framework, one has to reconcile the nonlinearity
f with the linearization p̂. One proposal is to work with the partial linearization

p̂ =

[
0 f(WX)(

f(WX)
)T −In1

]
,

i.e., the linearization trick for a gram matrixAAT , where we takeA = f(WX). We intend to explore
this in future work.

6 Conclusion

In this work, we provided an alternative method to determine the limiting spectral distribution of
the kernel 1

mn0
(WX)(WX)T , where W and X are random matrices each having i.i.d. mean-zero

Gaussian entries. We used the linearization trick and expressed the solution to the matrix Dyson
equation in terms of two fixed point equations. With these fixed point equations in hand, we used
an algorithm to simultaneously compute the Stieltjes transform of the limiting distribution and the
inverse transform. Our empirical results show that the distribution obtained indeed closely matched
the empirical spectral distribution in large dimension. With this being only a special case of the
distribution studied in [14, 2, 15], we intend on extending this analysis to the case where a non-linear
activation function f is applied to WX , which simulates a shallow neural network.
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